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Abstract

In this paper, I introduce a novel approach to analyzing life-cycle patterns
in earnings shocks by applying a Bayesian Logistic Smooth Transition Autore-
gressive (LSTAR)(1) model, characterized by its rich heterogeneity, to the Panel
Study of Income Dynamics data. A key strength of this methodology is its ca-
pacity to dissect the interplay among various determinants, such as age, job
tenure, income levels, and assets, which are often overlooked in conventional
income dynamics models. This study specifically focuses on age and job tenure,
offering a comparative analysis with traditional estimates derived from stan-
dard models. I find that individuals under 29 experience earnings shocks with
higher volatility and reduced persistence compared to their older counterparts.
Furthermore, the analysis reveals that longer job tenure is associated with im-
proved resilience to shocks, thereby enhancing our understanding of the un-
derlying economic mechanisms influencing income dynamics. The findings
underscore the critical role of heterogeneity in income dynamics models and
their potential implications for the calibration of macroeconomic models.
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1. Introduction

Over the last four decades, the labor market has experienced significant transforma-

tions that are yet to be fully integrated into our macroeconomic models’ calibration

of income dynamics. The challenge lies in that incorporating the complex nature of

income dynamics into a general dynamic equilibrium model is not trivial, leading

to a disconnect between theoretical representations of income shocks in the model

and the empirical observations. For instance, the widely acknowledged fact that

income shocks affect workers at different career stages differently has not been sys-

tematically factored into the standard model calibrations of income shocks. This

oversight, among others, raises crucial questions about the potential impact of life-

cycle patterns on labor earning risk and their implications for macroeconomic anal-

ysis. If these patterns do exist and diverge from conventional model predictions,

they could fundamentally reshape our understanding of key economic outcomes

such as consumption-saving decisions, wealth inequality, insurance mechanisms,

and the effects of business cycles and public policies.

This paper addresses several pivotal questions: Are there discernible life-cycle

patterns in idiosyncratic earnings shocks? How does aging influence these shocks?

What other factors contribute to the complexity of earnings dynamics? And to what

extent do earnings shocks correlate with job tenure? More broadly, this research

probes whether current macroeconomic models might be overlooking critical as-

pects of income dynamics, necessitating reevaluating how income shocks are cali-

brated.

To explore these questions, this study introduces a novel approach by employ-

ing a Bayesian Logistic Smooth Transition Autoregressive (LSTAR)(1) model to an-

alyze labor income dynamics within the Panel Study of Income Dynamics (PSID)

from 1968 to 2019. The LSTAR(1) model is distinguished by its incorporation of sig-

nificant heterogeneity in innovations, moving beyond traditional linear AR struc-

tures to embrace a nonlinear framework that captures the intricate nature of in-

come changes across an individual’s life span.

A vital feature of this research is its examination of various determinants of earn-
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ings shocks, such as age, job tenure, income levels, and asset accumulation, which

are often overlooked in standard models. The study specifically investigates the im-

pact of age and job tenure on earnings shocks, providing a comparative analysis

with traditional estimates and highlighting the potential for extending the analysis

to other dimensions. By expanding the analysis beyond age, this paper challenges

the prevailing simplifications in macroeconomic models, which tend to overlook

the age-dependent variability of income shocks. This research emphasizes the need

for more sophisticated models, such as the LSTAR(1), to capture the heterogeneity

and complexity inherent in income dynamics accurately.

Additionally, this paper contributes to the emerging field of Bayesian analysis in

income dynamics, offering a methodologically innovative approach with broad ap-

plicability and potential for yielding deeper insights. Adopting a Smooth Transition

Autoregressive (STAR) model within a Bayesian framework represents a significant

methodological advancement, providing a versatile tool for examining shock non-

linearities and their macroeconomic implications. My findings can be summarized

as follows.

First, there is a discernible life-cycle pattern in idiosyncratic earnings shocks.

Workers younger than 29 experience shocks with higher variance and a notable like-

lihood of lower persistence compared to their older counterparts, with a definitive

transition in the shock regime occurring assuredly before age 35. The stationary

variance of the persistent component of the earnings shocks for younger workers

is approximately 1.3 times higher than that for older workers. This transition varies

among educational groups, occurring around age 45 for college graduates and age

55 for high school graduates. The variance of shocks over the life cycle also exhibits

age-dependent changes, with a significant decline in variance for high school grad-

uates post-50 and an increase for college graduates post-30, peaking at 60% higher

towards the end of the life cycle.

Second, employing Bayesian methods alongside traditional GMM estimates re-

veals comparable results for the AR process’s correlation coefficient and variance,

as well as the variance of temporary shocks within a Restricted Income Profile (RIP)

model. However, incorporating nonlinearities in the model slightly reduces the per-
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sistence of shocks to a range between 0.96 and 0.97, revealing a higher kurtosis in

the innovation of persistent shocks not captured by GMM techniques. Extending

the model to accommodate a more flexible error term distribution demonstrates

that a significant majority of workers, 79%, encounter shocks with markedly lower

variance (0.0003 versus 0.03 in the standard model) and higher persistence (0.99

versus 0.96). Conversely, the remaining time, roughly every five years, they are sub-

jected to shocks with substantially higher variance (0.25 versus 0.03 in the standard

model), underscoring the high kurtosis (11) observed in the data.

Third, the analysis underscores the pivotal role of job tenure as a robust vari-

able influencing the magnitude and frequency of earnings shocks, challenging the

sole reliance on age as a determinant. The educational divide in shock experi-

ences among college and high school graduates diminishes when job tenure is con-

sidered, suggesting tenure’s significant impact on shock resilience. Workers with

longer tenure exhibit reduced shock volatility, indicating increased job stability and

greater predictability in earnings over time. This tenure-centric perspective harmo-

nizes previously noted educational disparities, advocating for a more comprehen-

sive approach to modeling income dynamics.

Finally, this study reveals that conventional models fail to capture the full com-

plexity of income dynamics. The proposed model, characterized by its innovative

framework where the income process is articulated as a convex combination of

two Autoregressive (AR) processes, offers a seamless extension to macroeconomic

calibrations. This model’s structure lends itself to straightforward approximation

through a discrete Markov process, as elucidated by Vandekerkhove (2005), ensur-

ing its tractability. Consequently, this facilitates the application of standard calibra-

tion techniques, thereby enhancing the model’s utility in macroeconomic analyses

and policy formulations.

1.1. Literature Review

The empirical exploration of income dynamics has yielded a diverse array of models

that capture varying degrees of complexity and heterogeneity. These models are
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often distinguished by the heterogeneity embedded within the conditional mean

and variance of income processes.

A prevailing trend in macroeconomic literature involves categorizing models

based on individual earning profile growth rates. Models assuming a uniform growth

rate across individuals are termed Restricted Income Profile (RIP) models, while

those attributing unique growth rates to each individual are known as Heteroge-

neous Income Profile (HIP) models. This dichotomy, inspired by human capital

theories, suggests that individuals with differing abilities yield varied returns on hu-

man capital investments. Notable examples of HIP models devoid of heterogeneity

in persistence or conditional variance include studies by Baker (1997), Baker and

Solon (2003), and Guvenen (2009), among others. Conversely, RIP models have

been exemplified in works by Abowd and Card (1989), Hryshko (2012), and MaCurdy

(1982).

Another segment of the literature focuses on modeling the conditional variance

of income processes to elucidate observed data patterns. This approach typically

disregards the persistent component of earnings shocks, allowing variance to fluc-

tuate across time and individuals. Key contributions in this area include the studies

by Barsky et al. (1997) and Meghir and Pistaferri (2004).

This paper presents a RIP model that intersects both aforementioned categories

by examining both the conditional mean and variance of the income process, akin

to the analyses in Browning et al. (2010) and Hospido (2012). It further aligns with

the burgeoning Bayesian approach to income dynamics, a field recently enriched

by the contributions of Geweke and Keane (2000) and Norets and Schulhofer-Wohl

(2010). The Bayesian framework’s potential for capturing nuanced heterogeneity

and its favorable small-sample properties, as highlighted by Nakata and Tonetti

(2015), suggest a promising avenue for future research.

The role of aging in shaping idiosyncratic earnings shocks remains a relatively

underexplored dimension. Pioneering efforts in this domain include the work of

Hause (1980), who investigated the impact of ”on-the-job training” on earnings pro-

files within a Swedish cohort, implicitly addressing age-related variations through a

time-varying AR process. Meghir and Pistaferri (2004) introduced an ARCH(1) spec-



5

ification to model the conditional variance of labor earnings, though age did not

emerge as a significant factor in their analysis.

The study by Karahan and Ozkan (2013) represents a comprehensive attempt to

explicitly model the age profile of earnings shocks. By employing GMM methods,

they discerned an age-related pattern in the persistence of earnings shocks, albeit

not in transitory shocks. Their methodology involved estimating persistence pa-

rameters and variances for various age bins and subsequently simplifying the model

with an age polynomial.

Distinct from Karahan and Ozkan (2013), this paper adopts a Bayesian approach,

offering a more granular level of heterogeneity and the flexibility to extend to HIP

settings. Unlike the multiple estimates necessitated by Karahan and Ozkan (2013)’s

frequentist approach, this paper proposes a model characterized by two distinct

regimes connected by a smooth transition function. The findings diverge as well;

while Karahan and Ozkan (2013) observed significant variance in persistence and

variances, this study suggests that the primary fluctuations occur in the innova-

tions.

Crucially, this paper extends beyond age as the sole explanatory variable, ac-

commodating additional factors to elucidate observed data patterns, thereby en-

gaging with various economic theories.

In the following section, I start with a description of the statistical model, and

Section III explains the estimation strategy. Section IV describes the data set and the

selection criteria for the sample used. Section V presents the results, and Section VI

concludes.

2. LSTAR Model for Income Dynamics

This study employs the Logistic Smooth Transition Autoregressive (LSTAR) model

of order 1 to analyze the nonlinear evolution of labor income throughout an indi-

vidual’s career. I express the logarithm of labor earnings, yih(t),t, for an individual i

at labor age h(t) during year t. The timeline spans from the individual’s initial ap-

pearance in the PSID at ti to their final observation at Ti. Labor age h(t) is adjusted
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to commence at 0 for calendar age 24, extending up to H , the maximum labor age

equivalent to calendar age 64.

The model captures earnings as influenced by time effects, individual character-

istics xih(t),t, a transient shock ωi
h(t),t reflecting measurement errors and short-term

productivity variations, and a lasting shock εih(t),t:

yih(t),t = xi′h(t),tβ + εih(t),t + ωi
h(t),t (1)

with β ∈ ℜk. The persistent shock, conventionally modeled as an AR(1) process, is

re-envisioned here to accommodate a nonlinear pattern across the life cycle with

two distinct regimes, transitioning smoothly via an LSTAR(1) framework for greater

economic authenticity:

εih(t+1),t+1 = (1−G(γ, c, τ it ))ρ1ε
i
h(t),t +G(γ, c, τ it )ρ2ε

i
h(t),t + ηit+1 (2)

G(γ, c, τ), the logistic cumulative distribution function, facilitates a smooth regime

transition, contingent on the individual-specific variable τ it and a threshold c. The

smoothness parameter γ dictates the transition’s graduality, with lower values lead-

ing to more gradual changes and higher values approximating the step function of

a TAR model.

The model structure is presented as a state-space framework:yih(t),t = xi′h(t),tβ + εih(t),t + ωi
h(t),t

εih(t+1),t+1 = εi(γ, c)h(t),tρ̃+ ηit+1

(3)

Here, εi(γ, c)h(t),t combines the persistent shock and its regime-dependent counter-

part, with ρ̃ = (ρ1, ρ2 − ρ1)
′ capturing the regime-specific persistence.

The LSTAR(1) model, tailored to capture the nuanced income dynamics within

the PSID, assumes a finite Gaussian mixture for the shock distribution ξit. This ap-

proach is grounded in the premise that any continuous distribution can be closely

approximated by such a mixture, offering a versatile framework for depicting in-
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come variations over time.1

Expressly, the shock distribution is modeled as:

ξit ∼
m∑
j=1

pgjN
(
0, g−1

j

)
(4)

Let sit, ranging from 1 to m, denotes an indicator for the specific Gaussian distri-

bution from which individual i’s shock at time t is drawn. This modeling choice

allows for a nuanced representation of shock variances as a convex combination of

variances from distinct regimes:

V ar
(
ηit/s

i
t

)
=
(
κigsit

)−1 [(
1−G

(
γ, c, τ it

))
+ ϕG

(
γ, c, τ it

)]
(5)

with kit(γ, c, ϕ) encapsulating the transition function’s influence.

To address the early-life determinants of lifetime earnings disparities—a signif-

icant portion of which is established before labor market entry—the model incor-

porates a scaling factor λ for the initial age-period shocks:

ηi1,t = λ−0.5

(
κ−0.5
i ξit

√
1−G(γ, c, τ it ) + ϕG(γ, c, τ it )

)
(6)

This feature is informed by empirical evidence suggesting the pre-market factors’

substantial role in shaping income trajectories (refer to Keane and Wolpin (1997),

Storesletten et al. (2004), and Huggett et al. (2011) for further insights).

In sum, the LSTAR(1) model presents a sophisticated and economically plausi-

ble framework for exploring the complex, nonlinear patterns of income dynamics

over the lifespan. By integrating a smooth transition mechanism and accounting

for pre-labor market influences, the model offers a nuanced alternative to conven-

tional AR(1) and TAR models, providing deep insights into the dynamics of income.

1For a comprehensive discussion on finite mixture models and their applications, see Everitt and
Hand (1981), Titterington et al. (1985), and McLachlan and Peel (2004).
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2.1. Restricted Income Profile Model

In the empirical macro-literature on income, the Restricted Income Profile (RIP)

model stands out for its specific approach to modeling labor income dynamics,

alongside its counterpart, the Heterogeneous Income Profile (HIP) model. The RIP

model posits that the growth rates of income, influenced by an additional year of

labor market experience or alternatively age, are uniform across individuals. This

contrasts with the HIP model, which allows for individual-specific growth rates, in-

troducing a random-effect structure in place of the fixed-effect framework of the

RIP model.

Despite the possibility of extending individual heterogeneity to the cubic poly-

nomial of labor market experience, evidence from Baker (1997) and Guvenen (2009)

suggests that such extensions do not significantly enhance model fit. The prevailing

view is to maintain a simplified HIP model structure, assuming that income effects

attributable to labor market experience powers are universally applicable.

One notable distinction is that a HIP model exhibits reduced persistence in the

AR(1) process compared to a RIP model, a difference that bears significant implica-

tions for calibrating macro models with incomplete markets.

The formulation of a RIP model is succinctly captured as follows:

yih(t),t = xi′h(t),tβ + εih(t),t + ωi
h(t),t

yih(t),t = β0 + β1h(t) + x̃i′h(t),tβ2 + εih(t),t + ωi
h(t),t

where xih(t),t = (1, h(t), x̃i′h(t),t)
′, and β = (β0, β1, β2)

′, with β2 ∈ ℜk−2.

In contrast, the HIP model is characterized by:

yih(t),t = β̃i
0 + β̃i

1h(t) + x̃i′h(t),tβ2 + εih(t),t + ωi
h(t),t

yih(t),t = xi′h(t),tβ
i + εih(t),t + ωi

h(t),t

where βi = (β̃i
0, β̃

i
1, β2)

′, and (αi
0, α

i
1)

′ ∼ G(·), with E(αi
0) = 0, E(αi

1) = 0, and

V ar[(αi
0, α

i
1)

′] = H−1
α .

Although economic theory may lean towards the HIP model due to the realis-
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tic portrayal of individual income growth rates driven by differences in ability, the

empirical evidence remains mixed, as highlighted by Abowd and Card (1989) and

Hryshko (2012). This paper, however, centers on the RIP model, particularly focus-

ing on age-dependent shocks and delineating its distinctions from the HIP frame-

work.

3. Estimation Methodology

This paper explores three distinct models to analyze income dynamics: a conven-

tional Restricted Income Profile (RIP) model, a RIP model incorporating constant

persistence with heterogeneity in the shock components, and a more complex RIP

model that accounts for heterogeneity in both persistence and the shocks.

For each model, the analysis includes a cubic polynomial of work experience to

model the characteristic hump-shaped trajectory of mean earnings throughout the

life cycle. This is complemented by variables for time effects, educational attain-

ment, marital status, racial background, and a binary indicator identifying individ-

uals as partially-retired, following the approach outlined in Casanova (2013).2

In the traditional RIP model, after adjusting for observable characteristics, I pin-

point the necessary moment conditions within the autocovariance matrix and em-

ploy the Generalized Method of Moments (GMM) for estimation. For the subse-

quent models, I adopt a Bayesian framework, estimating their posterior distribu-

tions through Markov Chain Monte Carlo (MCMC) methods.

3.1. Prior Selection

The selection of priors is guided by the availability of prior information, opting for

conjugate or non-informative priors accordingly. The chosen priors are standard

within the field, with a comprehensive breakdown and hyperparameter details pro-

vided in Appendix B. The priors employed are as follows:

2Individuals over the age of 55 are classified as partially-retired if their hourly wage falls below 70%
of the average wage observed for the 50-55 age group, with this reduced wage persisting until age 64.
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1. The error and transitory productivity components, denoted by ωi
h(t),t, are as-

sumed normal with ωi
h(t),t/σ

2
t ∼ N(0, σ2

t ), and the variance scale parameter

s2ω(σ
2
t )

−1 ∼ χ2(νω).

2. Uninformative priors are set for the threshold variable c and the proportion-

ality factor ϕ, with p(c) ∝ 1 and p(ϕ) ∝ 1
ϕ .

3. The smoothing parameter γ follows a truncated Cauchy distribution, ensuring

positivity: p(γ) ∝

(1 + γ2)−1, γ > 0

0, otherwise
.

4. Conjugate priors are selected for the state variables sit and the probability vec-

tor p: sit|p ∼ Multinomial(p), and p ∼ Dirichlet(α).

5. The persistence parameter ρ̃ is normally distributed with mean µ
ρ̃

and preci-

sion hρI: ρ̃ ∼ N(µ
ρ̃
, h−1

ρ I).

6. The regression coefficients β follow a normal distribution with hyperparame-

tersµ andH : β|(µ,H) ∼ N(µ,H−1), whereµ ∼ N(µ
µ
, H−1

µ ) andH ∼ Wishart(νH , SH).

7. The variance parameters for individual-specific random effectsκi and the com-

mon shock λ are chi-squared distributed: s2κκi ∼ χ2(νκ) and s2λλ ∼ χ2(νλ).

3.2. Posterior Distribution

The full posterior distribution for the model under study is defined as:

p (Θ|y) = p
(
y∗, {εih(t),t}

I,Ti
i=1,t=ti

, β, {σ2
t }Tt=1, ρ1, ρ2, γ, c, {κi}Ii=1, λ, µ,H,p, {gj}mj=1, {sit}

I,Ti
i=1,t=ti

|y
)

(7)

where yi = (yih(ti)ti , ..., y
i
h(Ti)Ti

)′ and y = (y′1, ..., y
′
I)

′. The imputed values y∗,ih(t),t are

used for missing or top-coded observations, i.e.

yih(t),t =


yih(t),t, when the observation is present in the sample;

y∗,ih(t),t, when the observation is not present in the sample;
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The object 7 has all the necessary information to infer the income dynamics in

the sample.

3.3. Markov Chain Monte Carlo Techniques

Markov Chain Monte Carlo (MCMC) methods are a class of simulation techniques

that generate sequences of random samples, where each sample depends on the

preceding one, forming a Markov Chain. These sequences are designed to con-

verge to a stable distribution, which represents the target of the investigation (refer

to Robert and Casella (2013) for a comprehensive overview). Among the plethora

of MCMC techniques, the Gibbs Sampler and the Metropolis-Hastings algorithm

stand out for their effectiveness in examining posterior distributions.

3.3.1. The Gibbs Sampler

The Gibbs Sampler, as introduced by Geman and Geman (1984), employs a strat-

egy of partitioning the target distribution 7 and sequentially sampling from each

conditional distribution of a partition, given the others. To elucidate, consider the

posterior distribution p(θ|y), where θ ∈ ℜk represents the parameter vector and

y ∈ ℜn symbolizes the observed data. The parameter vector θ is divided into seg-

ments θ0 and θ1. Starting from an initial state θ(0) = (θ
(0)
0 , θ

(0)
1 )′, the Gibbs Sampler

iteratively updates each segment by drawing from its conditional distribution given

the other segment: for each iteration m ∈ {1, . . . , B}, θ(m)
0 ∼ p(θ0|θ(m−1)

1 , y) and

θ
(m)
1 ∼ p(θ1|θ(m)

0 , y). This process generates a Markov Chain that, given sufficient

iterations, converges to the desired posterior distribution p(θ|y).

In the context of this model, it is practical to organize the sampling process into

15 distinct blocks. Twelve of these blocks lend themselves readily to Gibbs Sampling

due to their straightforward conditional distributions. The remaining three, how-

ever, involve more complex distributions that necessitate integrating a Metropolis-

Hastings step within the Gibbs Sampling framework. The comprehensive deriva-

tions of the posterior distributions for each partition are detailed in Appendix A.

The Gibbs Sampling procedure unfolds through the following 12 steps:
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1. Sample the imputed values y∗, given the model parameters β, the variances

{σ2
t }Tt=1, the covariates {xih(t),t}i,t, the state indicators {sit}

I,Ti
i=1,t=ti

, the state-

specific variances {gj}mj=1, the autocorrelation parameters ρ1, ρ2, the smooth-

ing parameter γ, the threshold c, the scaling factor ϕ, and the observed data

y.

2. Update the individual-specific shocks {εih(t),t}
I,Ti
i=1,t=ti

, conditional on the ob-

served and imputed data, model parameters, and the rest of the latent vari-

ables.

3. Update the regression coefficients β, based on the observed data, imputed

values, covariates, shocks, and prior information on β (mean µ and precision

matrix H).

4. Update the variance terms {σ2
t }Tt=1, considering the observed and imputed

data, covariates, and shocks.

5. Update the persistence parameters ρ̃, given the shocks and other model pa-

rameters.

6. Update the individual-specific random effects {κi}Ii=1, considering the shocks

and other model components.

7. Update the common shock variance λ, based on the first-period shocks and

the random effects.

8. Update the hyperparameter µ of the regression coefficients’ prior distribution,

given the current estimate of β.

9. Update the precision matrix H of the regression coefficients’ prior distribu-

tion, based on the current estimate of β and its mean µ.

10. Update the probabilities p for the state indicators, given their current assign-

ments.

11. Update the state indicators {sit}
I,Ti
i=1,t=ti

, considering the model’s shocks, ran-

dom effects, and other parameters.
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12. Update the state-specific variance parameters {gj}mj=1, based on the state in-

dicators, shocks, and other model components.

3.3.2. Metropolis-Hastings within the Gibbs Sampler

Within the Gibbs sampling framework, three posterior distributions—referred to as

blocks—require sampling to complete the model’s posterior distribution analysis.

The Metropolis-Hastings algorithm, as introduced by Metropolis et al. (1953) and

Hastings (1970), offers a robust approach for this purpose.

The Metropolis-Hastings algorithm, a cornerstone of MCMC methods, operates

by generating candidate samples from a proposal distribution q(·) and accepting

these samples based on their likelihood under the target distribution p(·). This se-

lective acceptance ensures that the ensemble of accepted samples approximates

the target distribution effectively.

To formalize, consider a target distribution p(x) supported over D ∈ ℜk, with x

and proposed x∗ both residing in D. During the mth iteration, the algorithm evalu-

ates the candidate x∗, drawn from q(x∗/x), against the current state x. The accep-

tance probability for x∗ is given by:

α(x∗, x) = min

{
p(x∗)

p(x)

q(x/x∗)

q(x∗/x)
, 1

}
. (8)

This criterion ensures that samples moving towards higher probability regions are

favored, promoting convergence to the target distribution. The Metropolis-Hastings

algorithm’s reversibility, guaranteed by this acceptance rule, is critical for the Markov

chain’s convergence to the desired distribution (detailed discussions can be found

in Chib and Greenberg (1995) and Geweke (2005)).

For this model’s implementation, the three challenging posterior distributions

are approached using an Independent Metropolis-Hastings scheme, characterized

by proposal densities q(x∗/x) that are independent of the current state x. This sim-

plifies the acceptance probability to:

α(x∗, x) = min

{
p(x∗)

p(x)

q(x)

q(x∗)
, 1

}
.
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Sampling strategies for these distributions utilize truncated normal distribu-

tions for γ∗ and ϕ∗, and a discrete distribution for c∗, ensuring a balanced explo-

ration of the state space. The proposal parameters are fine-tuned to achieve an

optimal acceptance rate of approximately 30%, enhancing the Markov chain’s effi-

ciency (as recommended by Müller (1991) and Canova (2007)).

4. Panel Study of Income Dynamics (PSID)

The Panel Study of Income Dynamics (PSID) represents a comprehensive panel

dataset, encompassing over 9,000 families and 70,000 individuals tracked contin-

uously since 1968. It stands as the world’s most extensive and enduring household-

based survey, providing an unparalleled resource for analyzing income dynamics

within the United States.

The focus of my analysis is on male household heads from 1968 to 2019, subject

to the following criteria:

1. Possession of at least two consecutive observations of earnings;

2. Age range between 25 and 64 years at the time of survey participation;

3. Exclusion from the Survey of Economic Opportunities (SEO) sample;

4. Positive hourly wages and labor income;3

5. Hourly wages ranging from $2.63 to $600 in 2007 dollars;4

6. Annual work hours between 456 and 4,992;5

7. Consistent and complete data on years of education;

3Labor income variables from the PSID include: V74, V514, V1196, V1897, V2498, V3051,
V3463, V3863, V5031, V5627, V6174, V6767, V7413, V8066, V9376, V8690, V11023, V12372,
V13624, V14671, V16145, V17534, V18878, V20178, V21484, V23323, (ER4140+ER4117+ER4119),
(ER6980+ER6957+ER6959), (ER9231+ER9208+ER9210), and (ER12080+ER12065+ER12193).

4The CPI from the US Department of Labor, Bureau of Labor Statistics is used to adjust labor in-
come series for inflation, available at ftp://ftp.bls.gov/pub/special.requests/cpi/cpiai.txt

5The upper limit of 4,992 hours is set to exclude likely erroneous reports. This equates to 16-hour
workdays, six days a week, which is generally unsustainable.
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A significant aspect of the PSID to consider is its shift to biannual data collection

post-1997. To address this change, I have imputed missing income values, detailed

in the Appendix.

Upon rectifying inconsistencies, the refined sample comprises 5,398 individu-

als, resulting in 61,163 individual-year observations (refer to Table 1). On average,

individuals are observed over an 11-year span. Table 1 reveals that the average and

median hourly wages are $26.51 and $31.66 respectively, with a standard deviation

of $22.15 and an interquartile range of $16.37, adjusted to 2007 dollar values.

The earnings distribution displays the expected right-skew typical of income

data. Examination of the median values in Figure 1’s boxplots, highlighted in red, il-

lustrates the conventional earnings peak observed in life-cycle income trajectories.

The boxplot widths, indicative of the interquartile range, offer a robust measure of

income variation over the life span, expanding into the mid-30s, stabilizing through

the 40s, and narrowing beyond.

This variation in income dispersion may reflect life-cycle decisions in human

capital accumulation (refer to Ben-Porath (1967)), occupational mobility and the

associated risks and returns (Kambourov and Manovskii (2009), Cubas and Silos

(2012)), intra-household resource allocation shifts (Greenwood et al. (2003), Knowles

(2013)), or strategies like returning to parental homes as a buffer against adverse fi-

nancial shocks (Kaplan (2012)).

Understanding the underlying factors in Figure 1c, whether they pertain to hu-

man capital investment, risk management, or family dynamics, is crucial for accu-

rately modeling income dynamics across the life cycle.

5. Results

For the analysis utilizing the LSTAR(1) model, the Markov Chain Monte Carlo (MCMC)

sampling process involves generating a total of 50,000 iterations. Observations in-

dicate that the chain reaches convergence after approximately 5,000 iterations. The

initial 5,000 iterations, identified as the burn-in phase, are subsequently excluded

from the analysis. Trace plots from the remaining samples exhibit satisfactory mix-
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ing, suggesting effective exploration of the posterior distribution.

In contrast, the analysis for the Restricted Income Profile (RIP) model, which in-

corporates constant persistence alongside innovation heterogeneity, utilizes a smaller

MCMC sample size of 20,000 iterations. Similar to the LSTAR(1) model, conver-

gence appears to be achieved after the first 5,000 iterations, which are also desig-

nated as the burn-in period and discarded.

To ensure robustness in the convergence assessment, the sampling process is

replicated multiple times from varied and widely spaced initial values, following

the recommendations of Gelman and Rubin (1992). These repeated samplings yield

consistently favorable results, reinforcing the reliability of the convergence findings.

Additionally, the convergence of the MCMC chains is further validated through Geweke’s

convergence diagnostic (refer to Geweke et al. (1991)), which corroborates the sta-

bility and convergence of the sampling process across both models.

5.1. Constant persistence and heterogeneity in the innovations

5.1.1. 1-Regime Model with Normal Errors

GMM techniques, leveraging the method of moments, provide a foundational ap-

proach in traditional models, equating theoretical population moments with em-

pirical sample moments across diverse data distributions. In anticipation, it’s im-

perative to ascertain whether Bayesian estimation with a normal and rich inno-

vation structure aligns with GMM-derived outcomes. To this end, I juxtapose our

model’s Bayesian estimations against those obtained from a conventional Restricted

Income Profile (RIP) model utilizing GMM, a staple in empirical macro-literature

and dynamic general equilibrium model calibrations.

The concurrence between Bayesian methods and GMM estimations is affirmed,

even within models assuming Normally distributed errors. Table 2 delineates that

idiosyncratic earnings shocks exhibit notable persistence in the life cycle, with a

persistence parameter ρ at 0.97, a persistent shock variance σ2
η at 0.029, and a tem-

porary shock variance σ2
ω at 0.095. This stationary AR(1) process, verging on a unit

root, implies that a shock’s effect diminishes by half over 17 periods, suggesting that
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a worker endures over 40% of their working life under the influence of an incom-

pletely mitigated shock. Bayesian analysis reinforces this, indicating a 99% proba-

bility for ρ within the 0.96 to 0.98 range, aligning with prevalent literature estimates.

While this model presupposes a common income growth rate across agents, the

initial earnings level varies, encapsulated by an intercept α with a variance σ2
α esti-

mated at 0.061. The sum of σ2
α and σ2

η quantifies the idiosyncratic earnings shock

variance in the initial age period sans the transitory variance component, equating

to 0.09. This suggests a substantial 29% earnings increase from a one-standard-

deviation shock relative to the mean.6

Delving into individual profiles via Table 3 reveals a majority with κ−1 below one,

indicating predominantly low-risk individuals, alongside a subset of “risky” indi-

viduals. Additionally, Initial Variance Estimates exhibit discrepancies between the

mean and mode at the labor market’s inception, with the mean Variance at First

Age at 0.063, closely mirroring GMM estimates, yet the mode Variance at First Age

stands at 0.013, hinting at potential biases.

Key Insights: A significant majority encounters less income volatility than stan-

dard models suggest, indicating an overestimation of risk in conventional approaches.

The variance in κi underscores the criticality of accommodating individual hetero-

geneity in income shock modeling.

The first comparison involves a 1-Regime LSTAR(1) model, akin to the previ-

ously discussed, albeit with a singular regime, implying constant persistence across

the life cycle and a nuanced innovation heterogeneity. As Table 2 illustrates, neg-

ligible discrepancies exist between these models’ estimates, with Bayesian settings

offering reduced variances compared to GMM.7 This underscores that the innova-

tion structure’s assumptions minimally impact the standard models’ conclusions

regarding shock variance and persistence.

Table 2 highlights the posterior distribution of the persistence parameter ρ, show-

6Labor earnings in efficiency units are modeled as exwθ, wherew denotes the wage rate, θ the hours
worked, and x ∼ N

(
µ, σ2

)
the earnings shocks. Thus, the efficiency units ex manifest as a log-normal

variable with mean eµ+σ2/2. A one-standard-deviation shock from mean µ elevates labor earnings by
eσ−σ2/2.

7This observation resonates with findings in Nakata and Tonetti (2015).



18

casing a mode at 0.97 and a standard deviation of 0.003. Figure 2a confirms a 99%

likelihood for ρ within the 0.96 to 0.98 range, endorsing the GMM’s ρ estimate of

0.976 within this model framework.

The parameters g−1, κ−1
i , and λ−1 constitute the innovations’ variance compo-

nents. The posterior distributions of λ−1 and g−1 are depicted in Figures 3a and 3b,

respectively, with κ−1
i ’s boxplot presented in Figure 3c. Notably, over 50% of individ-

uals exhibit κ−1
i values under 1, as delineated in Table 5. However, the density plot in

Figure 3c reveals individuals with substantially higher conditional variances, unac-

counted for in traditional RIP models, potentially leading to overestimated variance

in conventional RIP estimations. For instance, the mode of initial shock variance,

derived from the mode of g−1, κ−1
i , and λ−1, approximates 0.06, aligning with con-

ventional model estimates. Yet, focusing on the mean distributions elevates the

initial age-period variance to 0.26, deviating from previous estimates.

This discrepancy bears significant economic interpretation: a one-standard-

deviation shock could imply a 46% earnings increase relative to mean earnings,

considering the mean variance components, contrasting with a mere 23% increase

based on the mode. This distinction underscores the necessity of contextualiz-

ing findings, especially given the overwhelming majority of individuals with less

risky income shock processes than standard models typically suggest. Further ex-

amination (see Figure 4 and Table 6) reveals no substantial correlation between

”risky” classification and individuals’ race or marital status, with a notable preva-

lence among high school dropouts, postgraduates, and those in entrepreneurial or

managerial roles, highlighting occupational choice’s influence on income risk.

The similarity in initial shock dispersion across both models, coupled with the

conventional RIP’s overlook of κi heterogeneity, advises against standard specifica-

tions’ sole reliance.

5.1.2. 1-Regime Model with Mixture of Normal Errors

The exploration into innovations reveals overlooked complexities, prompting a de-

parture from normality assumptions towards a more adaptable mixture of Normal
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distributions. Preliminary Q-Q plot analyses suggest thinner tails than a normal dis-

tribution, indicating fewer extreme outliers and hinting at the inappropriateness of

normality assumptions (see Figure 1a).

Employing a two-normal-distribution mixture refines the error distribution ap-

proximation, introducing higher kurtosis indicative of heavier tails and a pronounced

peak, thus heightening the probability of extreme values. This new distributional

framework elevates shock persistence beyond prior observations, suggesting that

shocks have more enduring impacts (see Figure 2). A staggering 79% likelihood ex-

ists for workers to encounter low-variance shocks, interspersed with high-variance

shocks approximately every five years, emphasizing the heavy-tailed, sharp-peaked

distribution’s propensity for more frequent extreme shocks than a normal distribu-

tion would predict (see Table 4).

This flexible distributional approach significantly reduces the classification of

workers as ”risky,” with over 75% showcasing κ−1
i < 0.8, denoting diminished risk

levels. Yet, a minority still navigates considerable income volatility, as illustrated in

Figure 6.

5.2. Heterogeneity in the persistence and the innovations

5.2.1. 2-Regimes Model: Age as Threshold Variable

Moving beyond the constant persistence assumption of standard models, this sub-

section contrasts the conventional Restricted Income Profile (RIP) with a Logistic

Smooth Transition Autoregressive (LSTAR)(1) model. This LSTAR(1) framework de-

lineates heterogeneity in both persistence and innovations, interconnected by a

smooth transition function, with the variable age serving as a pivotal threshold.

This setup allows the idiosyncratic shocks’ nature to evolve across the life cycle, in-

fluenced by the proximity of age to the threshold.

The posterior distribution of the threshold variable c, illustrated in Figure 7a,

and summarized in Table 9, indicates a significant probability of the threshold be-

ing below 31, pinpointing 29 as the mode. This underscores a clear life-cycle pat-

tern in earnings shocks, with a substantial likelihood of transitioning to a new shock
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regime by age 31, nearly guaranteeing a transition by age 35. Interestingly, the tran-

sition age diverges based on education, occurring around age 45 for college grad-

uates and age 55 for high school graduates, suggesting that education level signifi-

cantly modifies the timing of shock regime shifts.

The transition function’s smoothness is governed by parameter γ, with a poste-

rior mode of 0.52 and a standard deviation of 0.487, as detailed in Table 9. An ex-

amination of Figure 7b reveals a 50% posterior probability for γ lying between 0.44

and 0.89, emphasizing the role of parameters γ and c in shaping the persistence

parameters ρ and the variance of innovations.

A notable aspect is the evolution of the combined persistence parameter ρ across

different ages, as outlined in Table 8. At 25, the persistence mode stands at 0.959,

ascending to 0.97 by 45 and stabilizing thereafter. The variance in ρ is more pro-

nounced at the onset of the life cycle, suggesting that age alone may not fully cap-

ture the dynamics at play, as indicated by the broad dispersion in Figure 10a and

the significant probability mass in the [0.955, 0.965] × [0.965, 0.975] region of Figure

8a for joint distributions of ρ1 and ρ2.

The model’s introduction of nonlinearities leads to a nuanced understanding of

innovations’ variance through parameters ϕ and kit(γ, c, ϕ). Figure 11a and Table 10,

alongside Figure 12b, elucidate how innovations’ variance diminishes as individu-

als age, with a 50% posterior probability for ϕ ranging between 0.71 and 0.80. This

translates to a 1.3 times higher stationary variance for younger workers compared

to older counterparts, further diversified by education, with high school graduates

witnessing a variance decline post-50, and college graduates experiencing a vari-

ance surge post-30.

The variance’s individual-specific component κ−1
i mirrors findings from the pre-

vious subsection, with a posterior mean of 2.37 and a substantial fraction of the

sample exhibiting κ−1
i values below 1.75, as seen in Figure 13a. The distribution of

other variance components, λ and g, is depicted in Figures 12c and 12a respectively.

This model’s initial variance mode at the first life-cycle stage is 0.06, implying a

23% earnings increase from a one-standard-deviation shock relative to the mean.

However, considering the mean of variance components elevates the initial vari-
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ance to 0.28, leading to a 47% earnings rise from a similar shock. This highlights

the criticality of acknowledging individual-specific heterogeneity, which standard

models often overlook, potentially leading to skewed interpretations of income dy-

namics.

5.2.2. 2-Regimes Model: Job Tenure as Threshold Variable

A closer examination of Figure 5 reveals that age alone does not fully encapsulate

the dynamics of income shocks, particularly when observing the disparate effects

on college and high school graduates. This discrepancy prompted an exploration of

job tenure as a potential variable to provide a clearer understanding of the underly-

ing forces.

The application of job tenure as a threshold variable in the model yields insight-

ful findings. The distribution of changes in shock regimes, predominantly occur-

ring within the first five years of employment, suggests a significant adjustment

phase for workers, with the median transition observed after just one year on the

job, as depicted in Figure 7b. Notably, this transition appears consistent across

educational backgrounds, indicating a universal aspect of job tenure on earnings

shocks.

Persistence of Shocks Across Job Tenure An intriguing pattern emerges when an-

alyzing shocks’ persistence relative to job tenure. Initially, shocks exhibit lower per-

sistence, particularly among high school graduates, with a marked increase in per-

sistence observed as tenure progresses, as detailed in Table 8 and illustrated in Fig-

ures 8b and 9b. This trend underscores a growing stability in earnings as workers

gain tenure, with Figure 10b highlighting the increasing persistence of shocks with

tenure.

Variance Components and Job Tenure Further analysis of variance components,

presented in Tables 9 and 10, reveals a consistent pattern across educational groups,

even when controlling for job tenure. However, a subset of individuals still exhibits

higher risk profiles, as shown in Figure 13b. Notably, college graduates face a lower
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variance at age 25 compared to high school graduates, suggesting smoother transi-

tions into the labor market for the former group. The variance of shocks in the ini-

tial tenure stages significantly exceeds those in later stages, with Figure 11b demon-

strating a substantial decrease in shock variance after the third year of employment,

emphasizing the stabilizing effect of job tenure on earnings dynamics, devoid of ed-

ucational background distinctions.

Implications of Job Tenure on Earnings Shocks The analysis unequivocally es-

tablishes job tenure as a critical determinant of earnings shock dynamics, effec-

tively nullifying the educational disparity in shock experiences. The transition from

high volatility in early tenure to markedly reduced volatility in later stages, as shown

in Figure 11b, highlights a significant shift towards increased job stability and earn-

ings predictability with accrued tenure. This evolution reflects the profound impact

of job tenure on the nature and frequency of earnings shocks, suggesting its pivotal

role in shaping income dynamics over the life cycle.

6. Conclusion

In this paper, I have unveiled life-cycle patterns in idiosyncratic earnings shocks,

pioneering the application of a Smoothed Transition Autoregressive (LSTAR) model

to the persistent component of residual earnings. This innovative approach tran-

scends traditional models by adeptly disentangling the economic forces at play across

the life cycle, offering a simplified yet potent framework to capture the nuanced

complexity inherent in income processes. Furthermore, the LSTAR model’s adapt-

ability enhances our macro models’ calibration in two significant ways: by helping

us understand the underlying economic mechanisms shaping income shock dy-

namics and by giving us an empirical process that can easily be incorporated into a

calibration by standard approximation techniques.

Transitioning from the conventional GMM framework, this study embraces a

Bayesian methodology, which is particularly adept at navigating the nonlinearities

and heterogeneity of income dynamics. Bayesian methods are uniquely suited to
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the intricacies of the PSID dataset, with its biannual periodicity post-1997 and the

presence of top-coded observations necessitating imputation. Bayesian methods

not only facilitate up-to-date estimation of income shock processes but also sim-

plify the estimation of income processes where the persistent component is not di-

rectly observable.

My findings reveal that while most shocks experienced by workers are of low

variance and high persistence, episodes of high-variance shocks are not uncom-

mon. I have shown a link between these shocks and age, with job tenure emerging

as a pivotal factor in income dynamics. Still, many forces are at play, as evidenced

by the differing income processes between high school and college graduates, in-

dicating the need for more comprehensive modeling and the introduction of new

variables.

A comparative analysis of a Restricted Income Profile (RIP) model with constant

persistence and heterogeneity against a standard RIP model indicates that many

individuals face less risky income shock processes than previously assumed. The

standard model overlooks this heterogeneity, leading to an overestimation of vari-

ance. Our Bayesian specification addresses this data feature, recommending its

consideration in macroeconomic model calibration.

Future research directions include extending this model to a Heterogeneous In-

come Profile (HIP) setting and incorporating additional threshold variables such as

income level, economic recession indicators, occupational mobility, and sectoral

employment. Model selection criteria can then be applied to identify the most ac-

curate model for simulating earning paths across the life cycle. Comparing these

simulations with standard model predictions and actual earnings data will illumi-

nate the efficacy and economic implications of different models.

In conclusion, this paper contributes significantly to our understanding of in-

come shocks by challenging conventional income dynamics models and highlight-

ing the critical role of variables such as age and job tenure. The Bayesian estimation

of LSTAR models not only facilitates overcoming the challenges posed by nonlin-

ear income processes but also opens new avenues for enhancing macroeconomic

analysis and policy formulation.
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Appendix A Posterior Distributions.

In this appendix, I derive the posterior distributions of the parameters of interest in

each of the Gibbs sampler steps for a Heterogeneous Income Profile Process (HIP)

and a Restricted Income Profile Process (RIP).

A1. Heterogeneous Income Profile Process

1.
(
y∗/

{
xih(t),t

}
i,t
,
{
βi
}N
i=1

,
{
σ2
t

}T
t=1

,
{
sit
}I,Ti

i=1,t=ti
, {gj}mj=1 , ρ1, ρ2, γ, c, ϕ, y

)′

Our starting point is:
yih(t),t = xi′h(t),tβ

i + εih(t),t + ωi
h(t),t

εih(t),t =
[(
1−G

(
γ, c, τ it

))
ρ1 +G

(
γ, c, τ it

)
ρ2
]︸ ︷︷ ︸

mi
t(γ,c,ρ1,ρ2)

εih(t)−1,t−1 + ηit

Then,

εih(t),t = yih(t),t − xi′h(t),tβ
i − ωi

h(t),t, and

yih(t),t = xi′h(t),tβ
i +mi

t (γ, c, ρ1, ρ2) ε
i
h(t)−1,t−1 + ηit + ωi

h(t),t

Combining both equations, we have:

yih(t),t = xi′h(t),tβ
i +mi

t (γ, c, ρ1, ρ2)
(
yih(t)−1,t−1 − xi′h(t)−1,t−1β

i − ωi
h−1,t−1

)
+ ηit +

ωi
h(t),t

yih(t),t =
(
xih(t),t −mi

t (γ, c, ρ1, ρ2)x
i
h(t)−1,t−1

)′
βi + mi

t (γ, c, ρ1, ρ2) y
i
h(t)−1,t−1 +

ωi′
h(t),t −mi

t (γ, c, ρ1, ρ2)ω
i
h−1,t−1 + ηit

Using the above, we can find the posterior distribution:

p

(
y∗,ih(t),t/

{
xih(t),t

}
i,t
,
{
βi
}N
i=1

,
{
σ2
t

}T
t=1

,
{
sit
}I,Ti

i=1,t=ti
, {gj}mj=1 , ρ1, ρ2, γ, c, ϕ, y

)
∝

∝ p
(
yih(t)+1,t+1/y

∗,i
h(t),t, · · ·

)
p
(
y∗,ih(t),t/y

i
h(t)−1,t−1, · · ·

)



29

∝ exp



−1
2



σ2
t+1 +mi

t+1 (γ, c, ρ1, ρ2)
2 σ2

t + V ar
(
ηit+1

)︸ ︷︷ ︸
Rt+1


−1

×

×

 yih(t)+1,t+1 −
(
xih+1,t+1 −mi

t+1 (γ, c, ρ1, ρ2)x
i
h(t),t

)′
βi−

−mi
t+1 (γ, c, ρ1, ρ2) y

∗,i
h(t),t


2

+

+R−1
t

 y∗,ih(t),t −
(
xih(t),t −mi

t (γ, c, ρ1, ρ2)x
i
h(t)−1,t−1

)′
βi−

−mi
t (γ, c, ρ1, ρ2) y

i
h(t)−1,t−1


2





∝ exp



−1
2



(
y∗,ih(t),t

)2 [(
mi

t+1 (γ, c, ρ1, ρ2)
)2

R−1
t+1 +R−1

t

]
−

−2y∗,ih(t),t



R−1
t+1m

i
t+1 (γ, c, ρ1, ρ2)×

×
(
yih(t)+1,t+1 −

(
xih+1,t+1 −mi

t+1 (γ, c, ρ1, ρ2)x
i
h(t),t

)′
βi

)
+

+R−1
t


(
xih(t),t −mi

t (γ, c, ρ1, ρ2)x
i
h(t)−1,t−1

)′
βi+

+mi
t (γ, c, ρ1, ρ2) y

i
h(t)−1,t−1








∝ exp

{
−1

2hy

(
y∗,ih(t),t − µy

)2}
where

hy =
(
mi

t+1 (γ, c, ρ1, ρ2)
)2

R−1
t+1 +R−1

t

and

µy = h
−1
y



R−1
t+1m

i
t+1 (γ, c, ρ1, ρ2)×

×
(
yih(t)+1,t+1 −

(
xih+1,t+1 −mi

t+1 (γ, c, ρ1, ρ2)x
i
h(t),t

)′
βi

)
+

+R−1
t

[(
xih(t),t −mi

t (γ, c, ρ1, ρ2)x
i
h(t)−1,t−1

)′
βi −mi

t (γ, c, ρ1, ρ2) y
i
h(t)−1,t−1

]


Therefore,

y∗,ih(t),t/ · · · ∼ N
(
µy, h

−1
y

)
.

For the time-period when the PSID becomes bi-annual, I impute the values for

the missing years with y∗,ih(t),t/ · · · ∼ N
(
µy, h

−1
y

)
I
(
y∗,ih(t),t

)
[y,y])

, where y and y
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are the lower- and upper-bounds defined in the text.

2.
({

εih(t),t

}I,Ti

i=1,t=ti
/ . . .

)
Following Durbin and Koopman (2002), we have for each individual i, condi-

tional on {sit}
Ti
ti

, a conditionally linear Gaussian state-space model given by:
ỹih(t),t = yih(t),t − xi′h(t),tβ

i = εih(t),t + ωi
h(t),t

εih(t),t+1 = mi
t+1 (γ, c, ρ1, ρ2) ε

i
h(t),t + ηit+1

(A.1)

where ωi
h(t),t ∼ N

(
0, σ2

t

)
, ηit/s

i
t ∼ N

(
0, g−1

sit

)
and εti−1 ≡ 0, for ti ≤ t ≤ Ti.

Let wi =
(
ωi
h(ti),ti

, ηiti , . . . , ω
i
h(Ti),Ti

, ηiTi

)′
, ỹi =

(
ỹih(ti),ti , . . . , ỹ

i
h(Ti),Ti

)′
and εi =(

εih(ti),ti , . . . , ε
i
h(Ti),Ti

)′
wherewi ∼ N (0,Ω) ,withΩ = diag

(
σ2
ti , g

−1
siti

, . . . , σ2
Ti
, g−1

siTi

)
.

Step 1: Take a random draw from w+ ∼ N (0,Ω) and use it to generate ỹi+ and

εi+ from the recursion (A.1).

Step 2: Apply the Kalman filter (Kalman, 1960) and the disturbance smoother

to ỹi+ and ỹi :

Let

ε̂ih(t),t/t−1 = E
(
εih(t),t/ỹ

i
h(t)−1,t−1, s

i
t

)
eit = ỹih(t),t − ε̂ih(t),t/t

Rt/t−1 = V ar
(
εih(t),t/ỹ

i
h(t)−1,t−1, s

i
t

)
=

(
mi

t (γ, c, ρ1, ρ2)
)2

Rt−1/t−1 + g−1
sit

Pt/t−1 = V ar
(
ỹih(t),t/ỹ

i
h(t)−1,t−1, s

i
t

)
= Rt/t−1 + σ2

t

As,


 ỹih(t),t

εih(t),t

 /ỹih(t)−1,t−1, s
i
t

 ∼ N


 ε̂ih(t),t/t−1

ε̂ih(t),t/t−1

 ,

 Pt/t−1 Rt/t−1

R′
t/t−1 Rt/t−1



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Then,

ε̂ih(t),t/t = ε̂ih(t),t/t−1 +Rt/t−1P
−1
t/t−1︸ ︷︷ ︸

Kt

eit

Rt/t = Rt/t−1 −Rt/t−1P
−1
t/t−1Rt/t−1

= (I −Kt)Rt/t−1

The disturbance smoother is given by:

ŵt = E
(
wt/ỹ

i
)
=

 σ2
tP

−1
t/t−1 −σ2

tK
′
t

0 g−1
sit


 eit

rt


where

rt−1 = P−1
t/t−1e

i
t +
(
mi

t (γ, c, ρ1, ρ2)−Kt

)
rt

with rTi ≡ 0.

Step 3: Compute ε̂i+ = E
(
εi+/ỹi+,

{
sit
}Ti

t=ti

)
and ε̂i = E

(
εi/ỹi,

{
sit
}Ti

t=ti

)
with

the forwards recursion:

ε̂ih(t)+1,t+1 = mi
t (γ, c, ρ1, ρ2) ε̂

i
h(t),t + g−1

sit
rt

Step 4: Keep ε̃i = εi+ − ε̂i+ + ε̂i.

Finally, {
ε̃i
}I
i=1

∼ p

({
εih(t),t

}I,Ti

i=1,t=ti
/ . . .

)

3.
(
βi/

{
xih(t),t

}
i,t
,
{
σ2
t

}T
t=1

,
{
εih(t),t

}I,Ti

i=1,t=ti
, µ,H,Hα, y, y

∗
)′

Before we proceed, we need to define some objects. Let β =
(
β̃0, β̃1, . . . , βk

)′
,

α̃i =
(
αi
0, α

i
1

)′, and h
i
t =

(
1, hi (t)

)
; let ỹih(t),t = yih(t),t − h

i
tα̃

i.

(a) p

(
β/
{
xih(t),t

}
i,t
,
{
σ2
t

}T
t=1

,
{
α̃i
}N
i=1

,
{
εih(t),t

}I, Ti

i=1,t=ti
, µ,H, y, y∗

)
∝
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∝
[

I∏
i=1

Ti∏
t=ti

p
(
yih(t),t/x

i
h(t),t,

{
α̃i
}N
i=1

, β, σ2
t , ε

i
h(t),t

)]
p (β/µ,H)

∝
{

I∏
i=1

Ti∏
t=ti

exp

[
− 1

2σ2
t

(
ỹih(t),t − xi′h(t),tβ − εih(t),t

)2]}
exp

{
−1

2 (β − µ)′H (β − µ)
}

∝ exp

[
−1

2

I∑
i=1

Ti∑
t=ti

(
ỹi
h(t),t

−xi′
h(t),t

β−εi
h(t),t

σt

)2
]
exp

{
−1

2 (β − µ)′H (β − µ)
}

∝ exp

{
−1

2

[
β′

I∑
i=1

Ti∑
t=ti

xi
h(t),t

xi′
h,t

σ2
t

β − 2β′
I∑

i=1

Ti∑
t=ti

xi
h(t),t

(
ỹi
h(t),t

−εi
h(t),t

)
σ2
t

+ β′Hβ − 2β′Hµ

]}

∝ exp

{
−1

2

[
β′
(

I∑
i=1

Ti∑
t=ti

xi
h(t),t

xi′
h(t),t

σ2
t

+H

)
β − 2β′

(
I∑

i=1

Ti∑
t=ti

xi
h(t),t

(
ỹi
h(t),t

−εi
h(t),t

)
σ2
t

+Hµ

)]}
∝ exp

{
−1

2

[(
β − µβ

)′
Hβ

(
β − µβ

)]}
whereHβ =

I∑
i=1

Ti∑
t=ti

xi
h(t),t

xi′
h(t),t

σ2
t

+H andµβ = H
−1
β

(
I∑

i=1

Ti∑
t=ti

xi
h(t),t

(
ỹi
h(t),t

−εi
h(t),t

)
σ2
t

+Hµ

)
.

Thus,

β/

({
xih(t),t

}
i,t
,
{
α̃i
}N
i=1

,
{
σ2
t

}T
t=1

,
{
εih(t),t

}I, Ti

i=1, t=ti
, µ,H, y, y∗

)
∼ N

(
µβ, H

−1
β

)
.

(b) p

(
α̃i/

{
xih(t),t

}
i,t
, β,
{
σ2
t

}T
t=1

,
{
εih(t),t

}I, Ti

i=1,t=ti
, µ,Hα, y, y

∗
)

∝

∝
[

Ti∏
t=ti

p
(
yih(t),t/x

i
h(t),t, β

i, σ2
t , ε

i
h(t),t

)]
p
(
α̃i/Hα

)
∝
{

Ti∏
t=ti

exp

[
− 1

2σ2
t

(
yih(t),t − xi′h(t),tβ

i − εih(t),t

)2]}
exp

{
−1

2 α̃
i′Hαα̃

i
}

∝ exp

[
−1

2

Ti∑
t=ti

(
yi
h(t),t

−xi′
h(t),t

βi−εi
h(t),t

σt

)2
]
exp

{
−1

2 α̃
i′Hαα̃

i
}

∝ exp

{
−1

2

[
α̃i′

Ti∑
t=ti

h
i′
t h

i
t

σ2
t
α̃i − 2α̃i′

Ti∑
t=ti

h
i′
t

(
yi
h(t),t

−xi′
h(t),t

β−εi
h(t),t

)
σ2
t

+ α̃i′Hαα̃
i

]}

∝ exp

{
−1

2

[
α̃i′
(

Ti∑
t=ti

h
i′
t h

i
t

σ2
t

+Hα

)
α̃i − 2α̃i′

Ti∑
t=ti

h
i′
t

(
yi
h(t),t

−xi′
h(t),t

β−εi
h(t),t

)
σ2
t

]}
∝ exp

{
−1

2

[(
α̃i − µα̃i

)′
H α̃i

(
α̃i − µα̃i

)]}
whereH α̃i =

Ti∑
t=ti

h
i′
t h

i
t

σ2
t
+Hα, and µα̃i = H

−1
α̃i

(
Ti∑
t=ti

h
i′
t

(
yi
h(t),t

−xi′
h(t),t

β−εi
h(t),t

)
σ2
t

)
.

Thus,

α̃i/

({
xih(t),t

}
i,t
, β,
{
σ2
t

}T
t=1

,
{
εih(t),t

}I, Ti

i=1, t=ti
, µ,Hα, y, y

∗
)

∼ N
(
µα̃i , H

−1
α̃i

)
.
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4.
({

σ2
t

}T
t=1

/
{
xih(t),t

}
i,t
,
{
βi
}N
i=1

,
{
εih(t),t

}I,Ti

i=1,t=ti
, y, y∗

)′

p
(
σ2
t /
{
xih(t),t

}
i
,
{
βi
}N
i=1

,
{
εih(t),t

}
i
, y, y∗

)
∝

∝

[ ∏
i∈Bt

p
(
yih(t),t/x

i
h(t),t,

{
βi
}N
i=1

, σ2
t , κi, ε

i
h(t),t

)]
p
(
σ2
t

)
where Bt =

{
i ∈ I s.t. yih(t),t is in the sample

}
, and nt

I = #Bt

∝
(
σ2
t

)−nt
I
2 exp

{
− 1

2σ2
t

∑
i∈Bt

(
yih(t),t − xi′h(t),tβ

i − εih(t),t

)2}(
σ2
t

)−( νω
2
−1) exp

{
− 1

2σ2
t
s2ω

}

∝
(
σ2
t

)−(
nt
I
2
+ νω

2
−1

)
exp

− 1
σ2
t


∑
i∈Bt

(
yih(t),t − xi′h(t),tβ

i − εih(t),t

)2
+ s2ω

2




∝
(
σ2
t

)−(
nt
I
2
+ νω

2
−1

)
exp

{
− 1

σ2
t

[
nt
Is

2
ω,t+s2ω
2

]}

∴
(
σ2
t

)−1
/

({
xih(t),t

}
i,t
,
{
βi
}N
i=1

, . . .

)
∼ Γ

nt
I
2 + νω

2 ,

∑
i∈Bt

(
yih(t),t − xi′h(t),tβ

i − εih(t),t

)2
+ s2ω

2


5.
(
ρ̃/
{
εih(t),t

}I,Ti

i=1,t=ti
, γ, c, λ, ϕ, {κi}Ii=1 ,

{
sit
}I,Ti

i=1,t=ti
, {gj}mj=1

)′

p

(
ρ̃/
{
εih(t),t

}I,Ti

i=1,t=ti
, γ, c, λ, ϕ, {κi}Ii=1 ,

{
sit
}I,Ti

i=1,t=ti
, {gj}mj=1

)
∝

∝

{
I∏

i=1

Ti∏
t=ti+1

p

(
εih(t),t/

{
εih(t),t

}t−1

ti
, ρ̃, γ, c, λ, ϕ, κi,

{
sit
}t
t=ti

, {gj}mj=1

)}
× p (ρ̃)

∝

{
I∏

i=1

Ti∏
t=ti+1

p
(
εih(t),t/ε

i
h(t)−1,t−1, · · ·

)}
× p (ρ̃)

∝

{
I∏

i=1

Ti∏
t=ti+1

exp

{
−1

2

[
κigsit

kit(γ,c,ϕ)

(
εih(t),t − εi (γ, c)h(t)−1,t−1 ρ̃

)2]}}
×

× exp
{
−1

2hρ
(
ρ̃− µρ̃

)′ (
ρ̃− µρ̃

)}

∝ exp

−1
2


I∑

i=1

Ti∑
t=ti+1

κigsit
kit(γ,c,ϕ)

(
εih(t),t − εi (γ, c)h(t)−1,t−1 ρ̃

)2
+

+ hρ
(
ρ̃− µρ̃

)′ (
ρ̃− µρ̃

)


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∝ exp


−1

2



I∑
i=1

Ti∑
t=ti+1

κigsit
kit(γ,c,ϕ)

 ρ̃′εi (γ, c)′h(t)−1,t−1 ε
i (γ, c)h(t)−1,t−1 ρ̃−

−2ρ̃′εi (γ, c)′h(t)−1,t−1 ε
i
h(t),t


+ hρ

(
ρ̃′ρ̃− 2ρ̃′µρ̃

)





∝ exp

−1
2


ρ̃′

(
I∑

i=1

Ti∑
t=ti+1

κigsit
kit(γ,c,ϕ)

εi (γ, c)′h(t)−1,t−1 ε
i (γ, c)h(t)−1,t−1

)
ρ̃−

−2ρ̃′

(
I∑

i=1

Ti∑
t=ti+1

κigsit
kit(γ,c,ϕ)

εi (γ, c)′h(t)−1,t−1 ε
i
h(t),t

)
+ hρ

(
ρ̃′ρ̃− 2ρ̃′µρ̃

)




∝ exp

−1
2


ρ̃′

(
I∑

i=1

Ti∑
t=ti+1

κigsit
kit(γ,c,ϕ)

εi (γ, c)′h(t)−1,t−1 ε
i (γ, c)h(t)−1,t−1 + hρI

)
ρ̃−

−2ρ̃′

(
I∑

i=1

Ti∑
t=ti+1

κigsit
kit(γ,c,ϕ)

εi (γ, c)′h(t)−1,t−1 ε
i
h(t),t + hρµρ̃

)



∝ exp

{
−1

2

[(
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A2. Restricted Income Profile Process

In the case of a RIP, the regression coefficients βi are the same for all individuals,

i.e. βi ≡ β ∀i. The changes in the posterior distribution are minimal in most of the

cases: the βi’s need to be replaced by the common β and the posterior distributions

for a RIP follow. Only for the blocks 3 and 12, there is slightly more work to do. Here

are how these blocks’ distributions look like:
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Appendix B Hyperparameters

The hyperparameters are selected to ensure the prior distributions are sufficiently

flexible, covering all plausible values of the parameters being studied. This ap-

proach aligns with the methodologies found in the literature, notably referenced

by Heathcote et al. (2010).

The term ωi
h(t),t accounts for the transitory component of an agent’s productivity

and measurement errors in survey data. As discussed, the variance of ωi
h(t),t follows

a chi-squared distribution. The chosen hyperparameters, νω = 200 and sω2 = 15,

set the 90% confidence interval for σ2
t between 0.064 and 0.089, with a 99% chance

of it falling between 0.02 and 0.11.

For the inverse of gj , denoted as g−1
j , the parameters s2 = 0.2 and νg = 2 suggest

a 90% probability range for the variance of ηit from 0.033 to 1.95.

The vector p follows a Dirichlet distribution with parameter α = 10 × 1M , en-

suring uniformity over the M − 1 simplex and similarity among the pj′s.

Regarding persistence, the mean of ρ̃ is set to µρ̃ = (0.5, 0)′ with a precision of

hρI = 0.5I. The parameter λ, affecting the first age-period shocks’ variance, follows

a chi-squared distribution with s2λ = 2 and νλ = 2. This results in a 90% probability

that λ−1 lies between 0.33 and 19.5, reflecting a non-informative prior but allowing

for significant variance adjustment.

The prior for µ is non-informative, with a mean of 0 and a dispersion controlled

by Hµ = 0.01I. Similarly, H follows a Wishart distribution with parameters νH = 10

and SH = 1, 000I, indicating a high level of uncertainty.

Lastly, the individual-specific component κi, related to the variance of ηit, is

modeled as a chi-squared variable. The chosen degrees of freedom νκ = 2 and

scale factor sκ2 = 1 allow κ−1
i to vary significantly, with a 90% chance of it being

between 0.17 and 9.75, reflecting the potential for both substantial increases and

modest decreases in individual variance.
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Tables and Figures.

Table 1: Wages per Hour Worked

Summary Statistics Complete High-School College Sample

Sample Sample

Minimum Wage: $2.64 $2.65 $2.64

25th Percentile: $15.29 $13.48 $21.62

Median: $22.47 $19.38 $31.25

Mean: $26.51 $21.25 $37.79

75th Percentile: $31.66 $26.50 $44.23

Maximum Wage: $597.33 $415.60 $597.33

Std. deviation: $22.15 $12.65 $33.89

Interquantile Range: $16.37 $13.02 $22.61

Number of observations: 61,163 32,808 15,445

Number of individuals: 5,398 3,161 1,339

Average number of years

an individual is in the sample: 11.3 10.4 11.5

Note: Summary Statistics for the PSID Sample 1968-2011. The High-school Sam-
ple includes all the observations from the complete sample where the head of
the household has at most high-school education. Instead the College Sample
includes only the observations where the head has a college degree or graduate
studies. All monetary values are expressed in 2007 dollars.
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Table 2: Restricted Income Profile Process (RIP)

Parameters GMM Bayesian

ρ 0.976 (0.0120) 0.967 (0.0029)

σ2
ω 0.095 (0.0153) 0.094 (0.0157)

σ2
η 0.029 (0.0103) 0.025 (0.0009)

Note: Estimates for the autocorrelation coeffi-
cient (ρ) and the variances of the transitory and
persistent shocks (σ2

ω and σ2
η, respectively) un-

der different estimation strategies. Standard Er-
rors are written in parenthesis. In the case of the
GMM estimates, the variances where computed
by means of a Block Bootstrap with 100 repeti-
tions.

Table 3: Detailed Breakdown of Persistent Shock Components

Parameter Mode Mean Std. Dev. 25% 50% (Median) 75%

λ−1 1.034 1.034 0.0031 1.032 1.034 1.036

κ−1
i 0.520 2.269 4.9093 0.481 0.693 1.728

g−1 0.025 0.027 0.0009 0.026 0.027 0.029
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Table 4: Models with Normal and Mixture-of-Normal Errors

Parameters Normal Errors Mixture-of-Normal Errors

All Heads of the Household

ρ 0.967 (0.0029) 0.992 (1.193e-03 )

σ2
ω 0.094 (0.0157) 0.092 (7.697e-03)

g−1
1 0.025 (0.0009) 0.0003 (5.947e-06)

pg1 100% (-) 78.5% (3.742e-03)

g−1
2 - (-) 0.2574 (8.217e-03)

pg2 - (-) 21.5% (3.742e-03)

Excess Kurtosis 0.0 10.8

Heads with High School Education

ρ 0.957 (0.0067) 0.989 (3.437e-03)

σ2
ω 0.106 (0.0383) 0.105 (1.7193e-02)

g−1
1 0.025 (0.0014) 0.0005 (2.968e-05)

pg1 100% (-) 79.9% (8.599e-03)

g−1
2 - (-) 0.2176 (1.456e-02)

pg2 - (-) 20.1% (8.599e-03)

Excess Kurtosis 0.0 11.7

Heads with College Education

ρ 0.950 (0.0080) 0.987 (3.038e-03)

σ2
ω 0.094 (0.0232) 0.090 (1.069e-02)

g−1
1 0.034 (0.0024) 0.0014 (9.425e-05)

pg1 100.0% (-) 79.4% (9.909e-03)

g−1
2 - (-) 0.2035 (1.562e-02)

pg2 - (-) 20.6% (9.909e-03)

Excess Kurtosis 0.0 10.8

Note: Mode estimates for the autocorrelation coefficient (ρ), the variance of the tran-
sitory shocks (σ2

ω) and the variance of the persistent shocks for each Normal distri-
bution (g−1

i ) with its corresponding probability (pgi ). “Heads with High School Ed-
ucation” includes heads with high school studies as wells as high-school drop-outs;
“Heads with College Education” includes all heads of the household with a college
degree and/or graduate studies. Standard Errors are written in parenthesis.
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Table 6: Characterization of the different Risk Groups

Variables Min. 25% Median Mean 75% Max.

Low-Risk Individuals

Average Age 25.5 30.5 36.3 38.5 44.7 63.5

Years in the Sample 2.0 5.0 11.0 13.6 20.0 40.0

Average Household Size (OECD) 1.0 1.6 1.9 1.9 2.1 5.4

Moving Frequency 0.0% 0.0% 0.0% 2.7% 0.0% 66.7%

Maximum Job-Tenure (years) 0.0 6.0 11.0 11.9 20.0 20.0

Frequency of Job Changes 0.0% 10.0% 30.0% 30.2% 50.0% 90.0%

Frequency of Occupational Changes 0.0% 0.0% 18.8% 22.0% 37.5% 85.7%

Normal-Risk Individuals

Average Age 25.5 30.8 36.5 38.5 45.4 63.5

Years in the Sample 2.0 4.3 10.0 12.6 19.8 38.0

Average Household Size (OECD) 1.0 1.5 1.8 1.8 2.1 3.3

Moving Frequency 0.0% 0.0% 0.0% 3.7% 0.0% 66.7%

Maximum Job-Tenure (years) 0.0 4.1 9.0 10.1 16.1 20.0

Frequency of Job Changes 0.0% 14.7% 33.3% 33.2% 50.0% 87.5%

Frequency of Occupational Changes 0.0% 0.0% 20.0% 23.4% 41.5% 83.3%

High-Risk Individuals

Average Age 25.5 33.0 38.8 40.6 47.4 63.5

Years in the Sample 2.0 5.0 11.0 13.5 20.0 40.0

Average Household Size (OECD) 1.0 1.6 1.9 1.9 2.1 4.0

Moving Frequency 0.0% 0.0% 0.0% 3.9% 0.0% 80.0%

Maximum Job-Tenure (years) 0.0 4.5 9.8 10.5 18.0 20.0

Frequency of Job Changes 0.0% 20.3% 37.5% 36.8% 50.0% 92.9%

Frequency of Occupational Changes 0.0% 0.0% 18.8% 21.9% 36.4% 85.7%

Notes: 1) Low-Risk Individuals are defined as those subjects with an individual-specific loading factor κ−1/2
i less than

0.95; Normal-Risk Individuals have a κ
−1/2
i between 0.95 and 1.05; while High-Risk Individuals have a κ

−1/2
i higher

than 1.5. 2) Household size is defined according to the OECD-modified scale where the first adult in the household is
counted as 1, and all subsequent persons older than 14 years old are counted as 0.5; all children are counted as 0.3. 3)
Frequencies are computed as the percentage of the total time an individual is followed where a change in his status has
occurred. 4) Moving Frequency is the percentage of the total time an individual was followed where he has moved to
another state. 5) See the Appendix for an explanation of the definition used for jobs and occupations.
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Table 7: Comparison between the Lowest- and Highest-Risk Groups

Variables Min. 25% Median Mean 75% Max.

Lowest-Risk Individuals

Average Age 28.5 36.5 40.8 42.5 49.3 60.0

Years in the Sample 8.0 16.0 22.0 22.7 29.0 40.0

Average Household Size (OECD) 1.0 1.7 2.0 2.0 2.2 5.4

Moving Frequency 0.0% 0.0% 0.0% 1.2% 0.0% 23.5%

Maximum Job-Tenure (years) 1.0 15.0 20.0 17.4 20.0 20.0

Frequency of Job Changes 0.0% 13.0% 26.7% 28.1% 40.0% 77.8%

Frequency of Occupational Changes 0.0% 7.1% 18.2% 20.9% 33.3% 75.0%

Highest-Risk Individuals

Average Age 25.5 34.1 39.7 42.0 50.0 63.5

Years in the Sample 2.0 5.0 11.0 12.7 19.0 38.0

Average Household Size (OECD) 1.0 1.6 1.9 1.9 2.1 3.6

Moving Frequency 0.0% 0.0% 0.0% 3.6% 0.0% 80.0%

Maximum Job-Tenure (years) 0.0 4.0 10.0 10.5 19.0 20.0

Frequency of Job Changes 0.0% 23.9% 40.0% 39.7% 55.6% 92.9%

Frequency of Occupational Changes 0.0% 0.0% 16.7% 21.3% 35.2% 85.7%

Notes: 1) Lowest-Risk Individuals are defined as those subjects with an individual-specific load-
ing factor κ

−1/2
i less than 0.6, and Highest-Risk Individuals have a κ

−1/2
i higher than 2.5. 2)

Household size is defined according to the OECD-modified scale where the first adult in the
household is counted as 1, and all subsequent persons older than 14 years old are counted as
0.5; all children are counted as 0.3. 3) Frequencies are computed as the percentage of the total
time an individual is followed where a change in his status has occurred. 4) Moving Frequency
is the percentage of the total time an individual was followed where he has moved to another
state. 5) See the Appendix for an explanation of the definition used for jobs and occupations.
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Table 8: Persistence Parameters

Parameters Age 25/ Age 35/ Age 45/ Age 55/ Age 64/

No Tenure 2 yrs Tenure 5 yrs Tenure 8 yrs Tenure 10 yrs Tenure

All Heads of the Household

1-Regime Normal Errors: ρ 0.967 0.967 0.967 0.967 0.967

1-Regime Mixture of Normal Errors: ρ 0.992 0.992 0.992 0.992 0.992

2-Regimes (Age as threshold): ρ 0.959 0.968 0.970 0.970 0.970

2-Regimes (Job-Tenure as threshold): ρ 0.840 0.939 0.992 0.992 0.992

Heads with High School Education

1-Regime Normal Errors: ρ 0.957 0.957 0.957 0.957 0.957

1-Regime Mixture of Normal Errors: ρ 0.989 0.989 0.989 0.989 0.989

2-Regimes (Age as threshold): ρ 0.949 0.949 0.952 0.967 0.984

2-Regimes (Job-Tenure as threshold): ρ 0.787 0.910 0.990 0.996 0.996

Heads with College Education

1-Regime Normal Errors: ρ 0.950 0.950 0.950 0.950 0.950

1-Regime Mixture of Normal Errors: ρ 0.987 0.987 0.987 0.987 0.987

2-Regimes (Age as threshold): ρ 0.957 0.956 0.944 0.933 0.935

2-Regimes (Job-Tenure as threshold): ρ 0.849 0.941 0.974 0.974 0.974

Note: Mode Estimates for a sample of ages in a model which allows for different ρ’s in the life-cycle (2-Regimes) and a
model which doesn’t (1-Regime). “Heads with High School Education” includes heads with high school studies as wells as
high-school drop-outs; “Heads with College Education” includes all heads of the household with a college degree and/or
graduate studies.
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Table 9: Weight Function Parameters.

Parameters Mode Mean Std. Dev. 25% 50% 75%

All Heads of the Household

Age as Threshold Variable

c 29.30 30.72 1.5575 29.39 30.68 33.48

γ 0.52 0.76 0.4873 0.44 0.59 0.89

Job-Tenure as Threshold Variable

c 1.032 1.034 0.0321 1.010 1.024 1.047

γ 1.044 1.045 0.0682 0.997 1.041 1.089

Heads with High School Education

Age as Threshold Variable

c 55.73 55.19 0.9010 54.94 55.48 55.78

γ 0.44 0.72 0.4863 0.37 0.54 0.94

Job-Tenure as Threshold Variable

c 1.055 1.062 0.0562 1.019 1.045 1.088

γ 0.931 0.935 9.7998e-02 0.866 0.925 0.999

Heads with College Education

Age as Threshold Variable

c 44.70 45.02 2.4652 44.02 45.20 46.42

γ 0.32 0.61 0.5383 0.25 0.40 0.78

Job-Tenure as Threshold Variable

c 1.117 1.136 0.1124 1.049 1.108 1.194

γ 1.408 1.426 0.2122 1.270 1.416 1.575

Note: Summary statistics for the threshold variable c and the smooth-
ing parameter γ. “Heads with High School Education” includes heads
with high school studies as wells as high-school drop-outs; “Heads
with College Education” includes all heads of the household with a col-
lege degree and/or graduate studies.
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Table 10: 2-Regime Models’ Persistent Shocks

Parameters Mode Mean Std. Dev. 25% 50% 75%

All Heads of the Households

Age as Threshold Variable

λ−1 3.519 3.531 0.2709 3.343 3.524 3.712

κ−1
i 0.485 2.367 5.2797 0.479 0.692 1.750

g−1 0.032 0.033 0.0023 0.031 0.033 0.035

ϕ 0.752 0.750 0.0537 0.710 0.751 0.794

Job-Tenure as Threshold Variable

λ−1 3.131 3.134 0.1794 3.014 3.132 3.254

κ−1
i 0.427 2.300 6.0194 0.476 0.694 1.649

g−1 0.095 0.096 3.144e-03 0.094 0.096 0.098

ϕ 0.168 0.168 6.744e-03 0.163 0.168 0.172

Heads with High-School Education

Age as Threshold Variable

λ−1 3.705 3.721 0.3804 3.457 3.712 3.971

κ−1
i 0.513 1.983 4.1754 0.495 0.675 1.440

g−1 0.026 0.027 1.467e-03 0.026 0.0274 0.028

ϕ 0.662 0.662 8.4647e-02 0.607 0.659 0.716

Job-Tenure as Threshold Variable

λ−1 3.177 3.207 0.2945 3.004 3.190 3.395

κ−1
i 0.523 1.932 4.6433 0.495 0.682 1.387

g−1 0.079 0.081 4.317e-03 0.078 0.081 0.084

ϕ 0.191 0.191 1.201e-02 0.182 0.190 0.199

Heads with College Education

Age as Threshold Variable

λ−1 2.577 2.683 0.5082 2.323 2.640 2.993

κ−1
i 0.777 1.978 4.033 0.504 0.689 1.403

g−1 2.969e-02 2.983e-02 2.314e-03 2.830e-02 2.977e-02 3.125e-02

ϕ 1.545 1.559 0.1593 1.442 1.539 1.664

Job-Tenure as Threshold Variable

λ−1 1.479 1.527 0.2934 1.322 1.503 1.704

κ−1
i 0.529 2.098 4.9632 0.493 0.688 1.419

g−1 0.086 0.085 6.303e-03 0.081 0.085 0.089

ϕ 0.253 0.255 0.0202 0.241 0.253 0.267

Note: Summary statistics for the components of the persistent shocks’ variance, namely the
loading factor for the Age-1 variance (λ−1), the individual loading factor (κ−1

i ) and the com-
mon variance for all individuals (g−1).
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Figure 7a: Posterior Densities for the Elements of the Logistic Function (Age)
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Figure 8a: Density Plots for ρ1 and ρ2 (Age).
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Figure 8b: Density Plots for ρ1 and ρ2 (Job-Tenure).
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Figure 9a: Contour Plots for ρ1 and ρ2 (Age).
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Figure 9b: Contour Plots for ρ1 and ρ2 (Job-Tenure).
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Figure 10a: Posterior Densities for the Correlation Coefficient ρ at different ages.
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Figure 10b: Posterior Densities for the Correlation Coefficient ρ at different Job-
Tenures.
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Figure 11a: Variance’s Weight Function kit (γ, c, ϕ).
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Figure 12a: Variance Components’ Posterior Densities (2-Regimes Model; Age).
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Figure 12b: Variance Components’ Posterior Densities (2-Regimes Model; Job-
Tenure).
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Figure 13a: Individual-Specific Loading Factor κ−1
i Posterior Distribution (2-

Regimes Model; Age).
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Figure 13b: Individual-Specific Loading Factor κ−1
i Posterior Distribution (2-

Regimes Model; Job-Tenure).


